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Reinforcement Learning:

learning sensor-motor controls

Mobile Manipulators:
- Locomotion
- Manipulation

- Observation

Powerful tool for autonomously

Problem: learning end-to-end policies for whole-body mobile manipulation is hard

» Large action space (head, arm, base, ...)

» Composite reward function (grasp, collision avoidance, navigation, ...)

Key Insight:

» In mobile manipulation tasks, the causal dependencies between the controllable

embodiment (i.e., dimensions of the action space) and the sub-objectives (i.e.,

elements of the reward signal) are often sparse.

We improve Reinforcement Learning for whole-body Mobile
Manipulation by 1dentifying and making use of causal dependencies
between the robot’s action dimensions and the reward terms
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Environment

Policy Learning

Training Pipeline : Causal MoMa
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Y Two-step procedure:

Il terms and action dimensions

| factored policy gradient to learn whole-body policies
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)I Step 1: Infers the causal dependencies existing between reward

Step 2: Exploiting the discovered Causal Matrix through

Read more on our
project webpage!

Experiments
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Compared to no-factorization or predefined factorization policy learning, Causal MoMa leads to more robust training and higher return in all domains
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Causal MoMa learned policies transfer sim2real to previously unseen scenes without the need of a model of the environment
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