Causal Policy Gradient for Whole-Body Mobile Manipulation

Jiaheng Hu, Peter Stone, Roberto Martín-Martín

We improve Reinforcement Learning for whole-body Mobile Manipulation by identifying and making use of causal dependencies between the robot’s action dimensions and the reward terms.

Introduction

Reinforcement Learning: Powerful tool for autonomously learning sensor-motor controls

Mobile Manipulators:
- Locomotion
- Manipulation
- Observation

Problem: learning end-to-end policies for whole-body mobile manipulation is hard

- Large action space (head, arm, base, …)
- Composite reward function (grasp, collision avoidance, navigation, …)

Key insight:
- In mobile manipulation tasks, the causal dependencies between the controllable embodiment (i.e., dimensions of the action space) and the sub-objectives (i.e., elements of the reward signal) are often sparse.

Training Pipeline: Causal MoMa

Two-step procedure:

Step 1: Infers the causal dependencies existing between reward terms and action dimensions

Step 2: Exploiting the discovered Causal Matrix through factored policy gradient to learn whole-body policies

Experiments

Compared to no-factorization or predefined factorization policy learning, Causal MoMa leads to more robust training and higher return in all domains.

Success Rate - real-world HSR robot

Causal MoMa learned policies transfer sim2real to previously unseen scenes without the need of a model of the environment.