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Goal: automatically design robots
specialized for a specific task, e.g., to
locomote through a given environment.

Challenges:

(a) Frozen Lake Task (b) Flat Terrain Task

» Sample-efficiency,
» Combinatorial explosion in number of

possible designs,

» Diverse topology in design space,

(c) Ridged Terrain Task

(d) Wall Terrain Task

» Cost of the evaluation of each design, Robots optimized for four types of

. o . environments using our method
» Multi-modality in solutions.

Comparison with related approaches: Graph Heuristic Search (GHS), Monte-Carlo
Tree Search (MTCS), Random Search, and Genetic Algorithm (GA) [1, 2, 3]. Ours (red
line, averaged over three trials) finds designs with higher rewards in fewer samples.
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Ablation studies: removing the prediction network (nopred) or grammar (nogram)

(c) Ridged Terrain
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